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Alzheimer’s disease (AD) is a degenerative disease of the central nervous system
characterized by memory and cognitive dysfunction, as well as abnormal changes in
behavior and personality. The research focused on how machine learning classified
AD became a recent hotspot. In this study, we proposed a novel voxel-based feature
detection framework for AD. Specifically, using 649 voxel-based morphometry (VBM)
methods obtained from MRI in Alzheimer’s Disease Neuroimaging Initiative (ADNI), we
proposed a feature detection method according to the Random Survey Support Vector
Machines (RS-SVM) and combined the research process based on image-, gene-, and
pathway-level analysis for AD prediction. Particularly, we constructed 136, 141, and
113 novel voxel-based features for EMCI (early mild cognitive impairment)-HC (healthy
control), LMCI (late mild cognitive impairment)-HC, and AD-HC groups, respectively. We
applied linear regression model, least absolute shrinkage and selection operator (Lasso),
partial least squares (PLS), SVM, and RS-SVM five methods to test and compare the
accuracy of these features in these three groups. The prediction accuracy of the AD-
HC group using the RS-SVM method was higher than 90%. In addition, we performed
functional analysis of the features to explain the biological significance. The experimental
results using five machine learning indicate that the identified features are effective for
AD and HC classification, the RS-SVM framework has the best classification accuracy,
and our strategy can identify important brain regions for AD.

Keywords: Alzheimer’s disease, RS-SVM, voxel-based features, gene-level, pathway-level

INTRODUCTION

Due to the development of medical technology, the world population has grown steadily, and the
elderly population has increased rapidly. It is expected that this trend will continue to accelerate
in the next few decades, and the occurrence of senile diseases and the social cost of aging are
expected to increase. Alzheimer’s disease (AD) is a brain disease. It is also a progressive disease,
meaning that it will get worse over time. It is believed that AD begins 20 years or more before
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the onset of symptoms (Jiao et al., 2020b). The preclinical stage of
AD is crucial for identifying early pathophysiological events and
developing interventions for disease improvement. Given that
changes in synaptic function occur early in the neurodegenerative
process, functional MRI (fMRI) is particularly promising for
detecting early changes in brain function (Agosta et al., 2017).
MRI has aroused great interest in AD-related research due
to its complete noninvasiveness, high availability, high spatial
resolution, and good contrast between different soft tissues
(Moradi et al., 2015).

Mild cognitive impairment (MCI), known as the early stage
of AD, was a disease state of cognitive decline between normal
elderly and dementia patients. MCI was divided into early
mild cognitive impairment (EMCI) and late mild cognitive
impairment (LMCI). Studies had pointed out that if MCI patients
were not diagnosed early, the probability of developing AD
could be as high as 80% after 6 years, and about two-thirds of
AD patients were converted through MCI (Barnes and Yaffe,
2011; Lenhart et al., 2021; Vitali et al., 2021). Using linear
mixed models, Vonk et al. (2020) analyzed 2,261 individuals with
MCI and non-MCI and found that the neurodegeneration was
associated with letter fluency and semantic fluency. Wang et al.
(2017) introduced the linear regression classification to classify
samples and obtained an accuracy of 97.51% (Zhang et al., 2014).
Bi et al. (2020a; 2021b) applied the random forest to identify
features associated with AD. Another study showed that the Flash
Visual Evoked Potential-P2 latency had AD-specific pathological
information (Arruda et al., 2020). Sabuncu et al. (2011) calculated
the degree of atrophy of hippocampus and cortical areas and
found that the specific cortical thinning and the reduction of
hippocampal volume were accelerated in early AD. As the classic
analysis methods, the machine learning algorithms brought new
research sight to AD-specific biomarkers (Zhang et al., 2015a; Ji
et al., 2021; Jiao et al., 2021; Wang et al., 2021). Zhuo et al. (2015)
applied a group lasso support vector machine to obtain the AD-
specific biomarkers. Patel et al. (2019) developed two XGBoost
classification models to classify AD and healthy control (HC).
Studies have proved that AD was closely related to brain atrophy
and that brain atrophy was mainly reflected in the reduction
of cortical surface area, thickness, and gray matter volume and,
therefore, gray matter volume, cortical surface area, and average
thickness contributed to the pathology of AD patients (Gullett
et al., 2021; Lorenzo et al., 2021; Piersson et al., 2021; Talwar et al.,
2021).

Despite many efforts, it is still challenging to determine
effective AD-specific biomarkers for early diagnosis and
prediction of disease progression and requires more research (Bi
et al., 2020b; Zhang and Shi, 2020). In our study, we proposed
a novel analysis framework based on the Random Survey
Support Vector Machines (RS-SVM) for the early detection of
AD conversion in MCI patients by using advanced machine
learning algorithms and combining voxel-based data with
standard neuropsychological test results. First, to obtain the
voxel sets, we extracted the differences between AD and HC.
Then, we applied the RS-SVM to identify important features
that classified EMCI, LMCI, AD, and HC well. Subsequently,
we applied several classical methods to construct the analysis

frameworks and evaluate the accuracy of these features
to classify with EMCI-HC, LMCI-HC, and AD-HC. The
experiment results demonstrate that the identified features were
effective in classifying AD, the RS-SVM framework performed
well, and the identified regions and genes will further our
understanding of AD.

MATERIALS AND METHODS

Figure 1 illustrates the framework of a voxel-based three-level
analysis for AD. The framework encompasses data processing
(A), features extraction (B), RS-SVM construction (C), and
the gene-level analysis using effective chi-square statistic (ECS)
method (Li et al., 2019) and pathway-level analysis using the
resulting genes (Bu et al., 2021) (D). The novation of this
framework is to make the full use of voxel-based data.

Imaging Data
In this study, we downloaded and analyzed 1,426
participants with genotyping data and MRI scans from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). These data include 353 HCs, 273 EMCI,
504 LMCI, and 296 with AD. The characteristics of these
participants, including average age and years of education, are
shown in Table 1.

Random Survey Support Vector
Machines-Based Machine Learning
Method
Data Processing
MRI scans, using voxel-based morphometry (VBM), were aligned
and normalized to a T1-weighted template image and the
Montreal Neurological Institute (MNI) space, respectively. The
gray matter density (GMD) maps were segmented, extracted,
and smoothed with an 8-mm FWHM (full width at the half
maximum) kernel. The Automatic Anatomical Labeling (AAL)
atlas was employed to define the regions of interest (ROIs) and
their coordinates (whole brain) (Tzourio-Mazoyer et al., 2002).
We then down-sampled the resulting maps to a dimension of
61 × 73 × 61 to reduce the data size for subsequent analysis in
EMCI-HC, LMCI-HC, and AD-HC groups.

To extract the differences within the three groups, i.e., A, B,
and C, we first performed the weighted process of the two sets
of images separately and saved them as matrices M and N (i.e.,
M for AD group and N for HC group). Then, let

(
vm′i, vn

′
i
)

represents the vector of two voxels (vm′i ∈ M, vn′i ∈ N), and we
obtained a vector V =

{
(vm′1, vn

′
1), (vm

′
2, vn

′
2), ..., (vm

′

k, vn
′

k)
}

(k = 271, 633). Since the voxels (vm′i = vn′i ) in the two groups
were meaningless for our research, we deleted these voxels
and obtained 64,411 sets of different voxels. We used V ′ to
denote the voxel set.

Feature Extraction
The data sets of features were still too many for our final binary
classification in EMCI-HC, LMCI-HC, and AD-HC groups.
Therefore, we estimated the number of features by calculating the
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FIGURE 1 | Study workflow. (A) We performed image preprocessing on voxel-based measures extracted from structural MRI (VBM-MRI) in the ADNI data set.
(B) Feature extraction. (C) RS- SVM construction. The features were identified by RS-SVM. (D) Evaluation and analysis. We assessed the biological significance
using gene- and pathway-level analysis.

similarity between two rows (vm′i, vn
′
i) and (vm′j, vn

′
j) in V ′. The

similarity of the voxels is given in the following equation:

ρi =
√

(vm′i − vm′j)2 + (vn′i − vn′j)2, (vm′i, vn
′
i), (vm

′
j, vn

′
j) ∈ V ′

(1)
where vm′i and vm′j (i, j = 1, 2, ..., 64411) are the values of AD
group. vn′i and vn′j (i, j = 1, 2, ..., 64411) are the values of HC
groups. ρi is the similarity between (vm′i, vn

′
i) and (vm′j, vn

′
j).

For the convenience of calculation, we divided the V ′ into ten
groups and obtained 55 sets of similarity matrices. On this basis,
we defined the number of minimal ρi as Cmin and the number of
maximal ρi as Cmax . Due to the value of Cmin and Cmax (Cmin
= 132, Cmax = 21), we defined that the number of features
should be in [Cmax,Cmin]. Then, we extracted 64,411 features of
all subjects from the original MR images to form a 649 × 64,411
matrix as the initial data set.

Random Survey Support Vector Machines
Construction
To extract the important feature, we proposed a single-
kernel SVM model based on random survey. The goal of
random survey was the establishment of a random experimental
data set. Since the initial data set X was a two-dimensional
matrix of 649 × 64,411, we selected l column from the X

randomly and constructed a single randomized experimental
data set X′ (l ∈ [Cmax,Cmin]). At the same time, the set of
columns corresponding to each column l in each extraction
was R = {r1, r2, ..., rl}, which denoted the index of brain loci
coordinates. The indices are extracted as follows:

u(k) = {u1, u2, ..., uk}, k = 64411
u′(k) = {up, uq, ..., ur}, r, p, q ∈ [1, 64411]
R = {r1 = up, r2 = uq, ..., rl = ug}, g ∈ [1, 64411]

(2)

After random extraction, we defined the training set:validation
set:test set as 6:2:2. The training set was used as an input
for training first. The validation set was applied to obtain the
optimal hyperparameters and replaced the initial parameters. The
remaining 20% was introduced as the test set to calculate the
accuracy of the tuned model and to evaluate whether the obtained
feature set R = {r1, r2, ..., rl} can be used as the final feature set.

In the classification process of SVM, the input data
X′ =

{
X
′

1,X
′

2, ...,X
′

N, ...,X
′

M

}
and the learning objective

y =
{
y1, y2, ..., yN, ..., yM

}
were given, where N was the number

of EMCI, LMCI, and AD samples, respectively, and M was the
number of HC. The learning objectives were binary variables
y = {−1, 1} , where -1 represents EMCI, LMCI, and AD,
respectively, and 1 represents HC in the three groups. The
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TABLE 1 | Participant characteristics.

Subjects HC EMCI LMCI AD p

Number 353 273 504 296 –

Gender (M/F) 187/166 153/120 309/195 166/130 <0.001

Age (mean ± sd) 72.2 ± 7.6 71.3 ± 7.1 74.0 ± 7.6 75.1 ± 5.5 <0.001

Edu (mean ± sd) 16.1 ± 2.7 16.1 ± 2.6 16.0 ± 2.9 16.3 ± 2.6 <0.001

HC, healthy control; EMCI, early mild cognitive impairment; LMCI, late mild
cognitive impairment; AD, Alzheimer’s disease; Edu, education.

feature set of the input data was regarded as the hyperplane D in
decision boundaries to separate the learning targets by positive
and negative classes, making the distance εi between any sample
and plane≥1. The hyperplane and the plane distance are defined
as follows:

D : wTX′ + b = 0
εi = yi(wTX′ + b), εi ≥ 1

(3)

where w denotes the normal vector of the hyperplane and
b denotes the intercept of the hyperplane. The decision
boundary satisfying this condition actually constructed two
parallel hyperplanes D1,D2 as interval boundaries to classify the
samples (Eq. 4).

wTX′i + b ≥ +1⇒ yi = +1
wTX′i + b ≤ −1⇒ yi = −1

(4)

Based on Eq. 4, it could be derived that all samples above
the upper interval boundary were positive and those below the
lower interval boundary were negative. The distance between
the two interval boundaries d = 2

||w|| was defined as the margin.
Since our experimental data X′ was selected randomly, there was
hyperboloid in the feature set to separate positive and negative
classes. Using nonlinear functions, the nonlinear separable
problems from the original feature set were mapped to a higher
dimensional Hilbert space H. The hyperplane, using as the
decision boundary, is defined as follows:

wTϕ(X′)+ b = 0 (5)

where ϕ : X′ 7→ H denotes the mapping function. Since
the mapping function was complex, it was difficult to
calculate the inner product. Therefore, the inner product
of the mapping function was defined as kernel functions
k(X′1,X

′
2) = ϕ(X′1)

Tϕ(X′2) to avoid the explicit operation.

Parameter Determination
We used the original linear kernel function of the support vector
machine first, and the penalty factor C and the kernel parameter
gamma were set as default values (C = 1 and gamma = 0.5).
Then, we applied the training data set and labels to train the
model. Subsequently, the hyperparameters were optimized by
grid search. The SVM could be transformed into an equivalent
quadratic convex optimization problem to solve using the
following equation:

min 1
2 ||w||

2
+ C

∑M
i=1 εi

yi(wTX′i + b) ≥ 1− εi, εi ≥ 0
(6)

Evaluation Metrics
In this article, the samples were positive and negative, and the
results classified had the following cases:

True positive (TP): the positive sample was predicted as a
positive sample.

True negative (TN): the negative sample was predicted as a
negative sample.

False positive (FP): the negative sample was predicted as a
positive sample.

False negative (FN): the positive sample was predicted as a
negative sample.

Let P denotes the positive sample and N denotes the negative
sample. We then obtained the following equation:

TP + FN = P
FP + FN = N

(7)

The evaluation metrics used in our research are as follows:
• Accuracy. Accuracy was the number of correctly classified
samples divided by the total number of samples (Eq. 8).

ACC =
TP + TN
P + N

(8)

• Precision. Precision was the proportion of the samples that were
actually positive (or negative) divided by samples classified as
positive (or negative) (Eq. 9).

precision =
TP

TP + FP
(9)

• Recall. Recall was the measure of coverage (Eq. 10).

recall =
TP

TP + FN
(10)

• Comprehensive evaluation indicators (F-Measure). Accuracy
and sensitivity sometimes needed to be considered together as
given in the following equation:

F =
(α2
+ 1) ∗ P ∗ R

α2(P + R)
(11)

Whenα=1, Eq. 11 is transformed into the following equation as
follows:

F =
2 ∗ P ∗ R
P + R

(12)

Model Comparison
We used the test set to evaluate the classification ability of 5
machine learning methods, including linear regression model,
least absolute shrinkage and selection operator (Lasso) model,
partial least squares (PLS) model, SVM model, and RS-SVM
model. First, the initial default parameters were applied to each
model to train and calculate the evaluation metrics. Then, the
grid search algorithm was used to optimize the hyperparameters
of the five models. Finally, the hyperparameters were introduced
in each model to recalculate the evaluation metrics. The results
were used to evaluate the pros and cons of the five models.
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Since the RS-SVM model in this article was optimized based
on the traditional SVM model, the other three evaluation models
were described in detail in this section.

Linear regression model was a statistical analysis method that
used regression analysis in mathematical statistics to determine
the quantitative relationship between the interdependence of two
or more variables.

Given a data set D = {(x1, y1), (x2, y2), ..., (xi, yi)} , we
learned that a linear model from this data set will reflect the
correspondence between xi and yi as accurately as possible.
The linear regression model, which was a function of linear
combination of attributes x, could be expressed as follows:

f (x) = w1x1 + w2x2 + ...+ wixi + b =WTX + b (13)

where W = {w1,w2, ...,wi} is column vector, indicating the
weight of the corresponding attribute in the prediction result.
Eq. 13 was represented as the following equation:

f (xi) = wixi + b, f (xi) ≈ yi (14)

Then it was to find a model such
that ∀ i ∈ [1,m] has f (xi) as close to
yi. Therefore, the sum of the squares of the difference between the
predicted value and the real value of each sample is minimized
and thus gives the following equation:

(w∗, b∗) = argmin(w,b)

m∑
i=1

(f (xi)− yi)2 (15)

where (w∗, b∗) is the optimal parameter, and the minimum value
of (w, b) is taken for the above equation.

The Lasso model was a compression estimation method with
the idea of reducing the variable set (decreasing order). By
constructing a penalty function, it could compress the coefficients
of variables and made some regression coefficients become 0, so
as to achieve the purpose of variable selection.

Given n data samples
{(
x1, y1

)
,
(
x2, y2

)
, . . . ,

(
xn, yn

)}
where

each xi ∈ Rd was a d-dimensional vector, i.e., each observed data
point was composed of the values of d variables, and each yi ∈ R
was a real value. What we had to do was to find a map f : Rd → R
that minimized the sum of squared errors based on the observed
data points. The optimization objective is given as follows:

β∗ = argminβ

1
n

n∑
i=0

((
yi − ȳ

)
− βT (xi − x̄)

)2
(16)

where β ∈ Rd is the optimized coefficient.
If Eq. 16 is expressed in matrix form, denoted by

X = [x1; x2; · · · ; xn]T , where each data point xi was
regarded as a column vector, then X ∈ Rn×d, denoted as
y =

(
y1, y2, · · · , yn

)T , then the optimization objective in matrix
form is given as follows:

β∗ = argminβ

1
n
||y-Xβ||22 (17)

Lasso added the L1 regularization term (see Eq. 18) to make the
model avoid over-fitting.

||β||1 =

d∑
j=1

∣∣βj∣∣ ; 1� j� d (18)

Then, the optimization objective function of Lasso is expressed as
the following equation:

β∗ = argminβ

1
n
||y-Xβ||22 + λ||β||1 (19)

PLS model was a many-to-many linear regression modeling
method, i.e., there are multiple independent variables and
multiple dependent variables. It found the best functional fit for a
set of data by minimizing the sum of squared errors.

The general multivariate underlying model of PLS is given by
the following equations:

X = TPT + E

Y = UQT
+ F (20)

where X is a n×m prediction matrix, Y is a n× p response
matrix; T and U are n× l matrices and both of them are
the projections of X and Y in the higher dimensional space;
P and Q are the orthogonal loading matrices of m× l and
p× l, respectively, and the matrices E and F are error terms,
normally distributed random variables subject to independent
and identical distributions. Decompose X and Y to maximize the
covariance between T and U.

Gene-Level Analyses
We analyzed the voxel-based features using gene-level analysis.
First, quality control (QC) was performed using the PLINK
version 1.9 software1 (Purcell et al., 2007). We performed
genome-wide association studies (GWASs) using the image
data and genetic data in whole brain using the linear
regression in PLINK. Age, gender, education, and the top 10
principal components from population stratification analysis
were included as covariates. A total of 5,574,300 single-nucleotide
polymorphisms (SNPs) were obtained by QC. We applied ECS
method (Li et al., 2019) to assign SNPs’ to autosomal genes.
Then the significant genes was obtained by Bonferroni correction
(family-wise error rate p-value < 0.05).

Pathway-Level Analyses
Using the resulting genes, we performed the pathway analysis
to assess the biological significance of these features (Bu et al.,
2021).KOBAS-I (Bu et al., 2021) pathway analysis tool (KOBAS;
bioinfo.org) and the Kyoto Encyclopedia of Genes and Genomes
database were applied to pathway analysis of the identified genes
(P < 0.001).

1https://www.cog-genomics.org/plink/1.9/
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FIGURE 2 | The accuracy curves were obtained through ten experiments for five methods in three groups. (A) Prediction accuracy of EMCI-HC group. (B) Prediction
accuracy of LMCI-HC group. (C) Prediction accuracy of AD-HC group.

TABLE 2 | Test results of different models.

Group Model Validation set Test set

Accuracy Precision Recall F-Measure Accuracy Precision Recall F-Measure

EMCI-HC Linear regression 0.67 0.67 0.67 0.67 0.73 0.73 0.73 0.73

Lasso 0.79 0.79 0.79 0.79 0.80 0.80 0.80 0.80

PLS 0.8 0.8 0.8 0.8 0.82 0.81 0.81 0.81

SVM 0.73 0.73 0.73 0.73 0.76 0.76 0.76 0.76

RS-SVM 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86

LMCI-HC Linear regression 0.62 0.62 0.62 0.62 0.78 0.78 0.77 0.77

Lasso 0.80 0.80 0.80 0.80 0.81 0.81 0.81 0.81

PLS 0.65 0.64 0.65 0.64 0.66 0.65 0.66 0.65

SVM 0.73 0.73 0.73 0.73 0.74 0.74 0.74 0.74

RS-SVM 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85

AD-HC Linear regression 0.85 0.85 0.84 0.84 0.84 0.85 0.84 0.84

Lasso 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85

PLS 0.91 0.92 0.91 0.91 0.91 0.92 0.91 0.91

SVM 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87

RS-SVM 0.91 0.91 0.91 0.91 0.93 0.93 0.93 0.93

Bold fonts represented the model and experimental results in this paper.

RESULTS

In recent studies, machine learning was used to detect the subjects
and brain regions of AD (Zhang et al., 2016) and the brain
functional statuses of EMCI (Jiao et al., 2020a) and to identify AD
and MCI (Zhang et al., 2015b; Wang et al., 2016). In this work, we
applied a novel feature extraction method and SVM to obtain the
features classified EMCI, LMCI, AD, and HC.

Comparison of the Five Methods
We employed the test set to evaluate the classification capability
of the five methods, and the experiments were repeated 10 times
with the selected parameter combination in each method. As
shown in Figure 2, the RS-SVM model has the best prediction
accuracy. The AD-HC group had more than 90% prediction
accuracy, while the other four methods all peaked below 90%.
The prediction accuracy of both the EMCI-HC and LMCI-HC

groups exceeded 85%, while the peak values of the other four
methods were all below 80%. The curves in Figure 2 also showed
that RS-SVM had good stability. In ten replicates, the difference
in accuracy was less than 10%. These analyses demonstrated
the satisfactory classification ability and stability of the RS-
SVM model.

Machine learning had been gradually maturing and has
been applied to the classification and prediction of AD. We
applied the validation set to obtain the optimal parameters
and the test set to evaluate the classification capability of
the five methods. The evaluation metrics of the five methods
implemented in EMCI-HC, LMCI-HC, and AD-HC were shown
in Table 2. As shown in Table 2, the RS-SVM has the best
accuracy, precision, recall, and F-measure. Only the values
of RS-SVM increase with the optimal parameters, and the
values of other models are stable. In the AD-HC, EMCI-
HC, and LMCI-HC groups, the F-measure of RS-SVM in the

Frontiers in Neuroinformatics | www.frontiersin.org 6 March 2022 | Volume 16 | Article 856295

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-16-856295 March 22, 2022 Time: 15:0 # 7

Meng et al. Voxel-Based Features Detection and Analysis

TABLE 3 | Top 10 conditionally significant genes were obtained. Chr represents
Chromosome; Gene represents the gene name; CorrectedP represents P-value
generated by Bonferroni correction.

No. Chr Gene CorrectedP

1 8 CSMD1 1.74556E-36

2 16 RBFOX1 3.18755E-23

3 16 CDH13 1.07119E-20

4 9 PTPRD 1.92988E-19

5 8 DLGAP2 3.74049E-17

6 11 CNTN5 4.81385E-16

7 7 MAGI2 5.93057E-16

8 20 MACROD2 1.50704E-14

9 16 WWOX 1.64798E-14

10 3 CNTN4 1.87567E-13

TABLE 4 | Top 10 significant pathways.

NO. Pathways Corrected
P-value

Gene

1 Insulin
secretion

1.01E-06 PLCB1, PRKCB, PRKCA, CREB5,
RYR2, CHRM3, KCNMA1, RAPGEF4,
CACNA1C

2 Oxytocin
signaling
pathway

4.80E-06 PLCB1, PRKAG2, PRKCA, CACNB2,
RYR3, RYR2, PRKCB, CACNA1C,
ITPR2, CACNA2D3

3 Salivary
secretion

7.70E-06 PLCB1, PRKCA, RYR3, PRKCB,
CHRM3, KCNMA1, PRKG1, ITPR2

4 Vascular
smooth muscle
contraction

7.94E-06 PLCB1, CACNA1C, PRKCH, PRKCA,
PRKCB, PRKCE, KCNMA1, PRKG1,
ITPR2

5 Calcium
signaling
pathway

1.48E-05 PLCB1, PRKCB, ERBB4, PRKCA,
RYR3, RYR2, CHRM3, CACNA1C,
ITPR2, PDE1A

6 Glutamatergic
synapse

2.08E-05 PLCB1, CACNA1C, PRKCA, GRIK2,
PRKCB, DLGAP1, ITPR2, GRM7

7 Morphine
addiction

5.00E-05 PRKCA, PDE1A, PRKCB, PDE3A,
GABRB3, PDE4D, PDE10A

8 Circadian
entrainment

5.56E-05 PLCB1, PRKCB, PRKCA, RYR3,
RYR2, CACNA1C, PRKG1

9 Pancreatic
secretion

5.56E-05 PLCB1, PRKCB, PRKCA, RYR2,
CHRM3, KCNMA1, ITPR2

10 Aldosterone
synthesis and
secretion

5.56E-05 PLCB1, CACNA1C, PRKCA, CREB5,
PRKCB, PRKCE, ITPR2

validation set were 0.91, 0.86, and 0.85 from high to low. In
the AD-HC, EMCI-HC, and LMCI-HC groups, the F-measure
of RS-SVM in the test set were 0.93, 0.86, and 0.85 from
high to low. This also indicated that the RS-SVM model was
scalable, and SVM combined with other schemes have better
performance than single SVM. In addition, since the same
features were applied to the five models, good results were
obtained for all five models (all above 0.8). This proved that
the identified features were excellent in the classification of AD
and HC and were meaningful for the identification of AD.
Therefore, we performed GWAS of these features to analyze their
biological significance.

Results of Gene-Level Genome-Wide
Association Study
We performed the conditional gene-based association scans on
whole genome. All genes with conditional association P-values
passing Bonferroni correction for family-wise error rate at
0.05 were extracted. We performed the gene-based association
analysis by using P-values of 113 novel voxel-based features
for identifying susceptibility genes of AD. There are 242
genes (corrected P-value < 0.001) associated with AD. These
top 10 conditionally significant genes are shown in Table 3.
Studies have shown that CSMD1 (SNP: rs34464519, CorrectedP:
1.74556E-36) was related to AD (Stepanov et al., 2014; Li
et al., 2020; Bi et al., 2021a). RBFOX1 (SNP: rs55642412,
CorrectedP: 3.18755E-23) has been found to play a role in
neuronal development (Raghavan et al., 2020). PTPRD (SNP:
rs62538998, CorrectedP: 1.92988E-19) has been confirmed to be
related to AD and MCI in previous studies (Huang et al., 2021).
DLGAP2 (SNP: rs72507619, CorrectedP: 3.74049E-17) was found
to be predominantly expressed in the brain and associated with
a wide variety of neurological disorders (Linthorst et al., 2020).
WWOX gene has been reported to be a potential mechanism that
may be involved in the pathogenesis of AD, focusing on the cell
death signaling pathway in neurons (Teng et al., 2012).

Results of Pathway-Level Genome-Wide
Association Study
Detecting pathways may provide useful information about the
pathogenic molecular mechanism underlying AD. In our work,
70 enriched pathways were identified. The top 10 significant
pathways are shown in Table 4. Impaired insulin secretion
was associated with higher risk of any dementia and cognitive
impairment (Rönnemaa et al., 2008). Oxytocin signaling pathway
was neuroprotective to many neurological disorders, such as AD
(Almansoub et al., 2020). Vascular smooth muscle contraction
was associated with the development of neurodegeneration in AD
(Hald et al., 2016).

DISCUSSION

We proposed a voxel-based three-level analysis framework for
AD that extracted the voxel-based ROI, which included the whole
brain from MRI. Although the voxel-based research could solve
the limitations of the research method based on the ROI, it was
more easily affected by the characteristics of high-dimensional
data. Feature selection in RS-SVM model solved the dimensional
disaster caused by too many attributes. In this work, we identified
136, 141, and 113 MRI features for EMCI-HC, LMCI-HC, and
AD-HC groups, respectively.

We performed RS-SVM model to identify important brain
regions such as hippocampus, amygdala, angular gyrus, and
calcarine sulcus for AD. The hippocampus was located in the
midlimbic system of the brain and had an important impact on
memory and cognitive function. Many studies had shown that
abnormalities in hippocampal volume and function were closely
linked to AD. Although many patients had not shown symptoms
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FIGURE 3 | ROC curve of five classification methods for three groups. (A) Prediction ROC of EMCI-HC group. (B) Prediction ROC of LMCI-HC group. (C) Prediction
ROC of AD-HC group.

FIGURE 4 | An image showing the relation of genes and pathways.
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of AD during MCI period, the temporal lobe located in the inner
part of the brain had obvious symptoms. The atrophy of the
hippocampus was the most obvious (Adachi et al., 2021; Guo
et al., 2021; Zhao et al., 2021). Located at the bottom of the brain,
the amygdala was shaped like an almond and was the center of
the brain to control and manage emotions. Pathological protein
changed in the amygdala affected the occurrence, development,
and evolution of AD and led to nerve damage or tissue cell
aging (Biechele et al., 2021; Ni, 2021). The angular gyrus was the
portion surrounding the end of the superior temporal sulcus in
the temporal lobe. Gray matter atrophy gradually spread from
the basal ganglia to the angular gyrus, temporal regions, and
eventually to the subcortical-cortical network as neurological
disease progresses. The angular gyrus was key AD-risk region
(Browndyke et al., 2021; Zenke et al., 2021). The calcarine sulcus
was located posterior to the medial surface of the hemisphere.
Less activation of the bilateral anterior calcarine sulcus was
associated with better delayed recall in amnestic MCI patients
(Chen et al., 2021; Lejko et al., 2022).

In our work, the EMCI-HC, LMCI-HC, and AD-HC groups
were classified in order to increase the specificity and detail of
classification and to enable early diagnosis of the disease. In this
study, five classification models of linear regression, Lasso, PLS,
SVM, and RS-SVM were applied. The prediction accuracy of AD-
HC was the highest. EMCI and LMCI represented the middle
stage of disease progression. Therefore, the prediction accuracies
of EMCI-HC and LMCI-HC were lower than that of AD-HC.

The machine learning was applied to classify AD and HC
in previous studies (Zhang and Wang, 2015; Wang et al.,
2018; Zhang et al., 2018; Ji et al., 2021; Jiao et al., 2022).
For further classification validation, we plot the ROC curves
(Figure 3) of five machine learning classification methods
for EMCI-HC, LMCI-HC, and AD-HC groups. The AUCs
of the RS-SVM for EMCI-HC, LMCI-HC, and AD-HC were
0.898, 0.839, and 0.964, respectively. As can be seen in
Table 2, the proposed classification method, based on RS-
SVM, consistently outperforms other methods (i.e., linear
regression, Lasso, PLS, and SVM). This proved that the
framework based on RS-SVM was optimal compared with the
other four methods.

With the replication of statistical gene-level GWAS, we
obtained PLCB1, PTPRD, RYR3, CACNA1C, KCNMA1, and
PRKCA genes. The PLCB1 gene was implicated in AD
pathogenesis (Bastrup et al., 2021). The PTPRD gene has been
found on the short arm of human chromosome 9. Recent report
identified PTPRD association with the extent of neurofibrillary
pathology in AD brain specimens (Chibnik et al., 2018; Uhl
and Martinez, 2019), and also RYR3 gene for the RYR which
functions to release the stored endoplasmic reticulum calcium
ions (Ca2+) to increase intracellular Ca2+ concentration. The
studies demonstrate that altered levels of intracellular Ca2+ affect
neurodegeneration (Gong et al., 2018; Nilipour et al., 2018). It
has been shown that the expression of CACNA1C inhibits the
hyperphosphorylation of Tau protein (Jiang et al., 2018).

Some pathways include insulin secretion, oxytocin signaling
pathway, salivary secretion, vascular smooth muscle contraction,
and AD closely related to genes (Figure 4).

In summary, our proposed framework based on RS-SVM
performed well in features constructed, and the framework had
good classification performance for EMCI-HC, LMCI-HC, and
AD-HC groups. In particular, AD-HC was the best in terms of
classification accuracy. Several pathogenic genes and abnormal
subregions identified singing this framework are related to AD.
Therefore, we speculate that the remaining genes identified could
be regarded as the candidate genes for AD. The discoveries
in this study provide new candidate genes for AD, and the
constructed features can be regarded as a new indicator to
distinguish AD from HC.
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